
Cryptanalysis of OCB2

Akiko Inoue and Kazuhiko Minematsu

NEC Corporation, Japan
a-inoue@cj.jp.nec.com, k-minematsu@ah.jp.nec.com

Abstract. We present practical attacks against OCB2, an ISO-standard
authenticated encryption (AE) scheme. OCB2 is a highly-efficient block-
cipher mode of operation. It has been extensively studied and widely
believed to be secure thanks to the provable security proofs. Our attacks
allow the adversary to create forgeries with single encryption query of
almost-known plaintext. This attack can be further extended to powerful
almost-universal and universal forgeries using more queries. The source
of our attacks is the way OCB2 implements AE using a tweakable block-
cipher, called XEX∗. We have verified our attacks using a reference code
of OCB2. Our attacks do not break the privacy of OCB2, and are not
applicable to the others, including OCB1 and OCB3.

Keywords: OCB, Authenticated Encryption, Cryptanalysis, Forgery,
XEX

1 Introduction

Authenticated encryption (AE) is a form of symmetric-key encryption that pro-
vides both confidentiality and authenticity of messages. Now it is widely accepted
that AE is a fundamental security tool for many practical applications, such as
TLS.

OCB is a blockcipher mode of operation for AE. It is one of the most cel-
ebrated schemes in the cryptography for its beautiful and innovative architec-
ture. OCB is very efficient. In fact, it is as efficient as encryption-only modes,
and is parallelizable. There are three versions of OCB. The first version (OCB1)
was proposed at ACM CCS 2001 by Rogaway et. al [RBBK01]. The second
one (OCB2) was proposed at Asiacrypt 2004 by Rogaway [Rog04a] (hereafter
Rog04), and the latest one (OCB3) was proposed at FSE 2011 by Krovetz and
Rogaway [KR11]. Each version of OCB has received significant attentions from
theory and practice. OCB1 was considered for the security mechanism of Wire-
less LAN (IEEE 802-11), OCB2 is standardized in ISO/IEC 19772:2009 [ISO09],
and OCB3 is in RFC 7253 [RFC14]. Moreover, OCB3 is a finalist of CAESAR
competition1. Various versions of OCB have been implemented in the crypto-
graphic libraries, such as Botan, BouncyCastle, LibTomCrypt, OpenSSL, SJCL
etc.
1 https://competitions.cr.yp.to/caesar.html

https://competitions.cr.yp.to/caesar.html

The security of (all versions of) OCB has been extensively studied. For each
version, the author(s) provided the security reductions, that is, a break of OCB
implies the break of the underlying blockcipher. If the blockcipher is secure, the
security bounds (roughly, the success probability of attacks) are O(σ2/2n) for
σ processed blocks, called “birthday bounds” named after the birthday para-
dox. From the attacker point of view, Ferguson [Fer02] and Sun et.al [SWZ12]
showed collision attacks that need 2n/2 processed blocks, implying the security
bounds are tight. Attacks in the misuse scenarios are proposed by Andreeva et.
al [ABL+14] and Ashur et. al [ADL17]. Robustness of the CAESAR candidates
including OCB was studied by Damian and Vaudenay [VV18]. From the prov-
able security point of view, Aoki and Yasuda [AY13] showed a relaxation on the
assumption of the underlying blockcipher in a modified OCB, and Ritam and
Nandi [BN17] showed an improvement on the security bound of OCB3.

Despite aforementioned attacks and studies on provable security, it is widely
believed that the security proofs are correct, thus all versions of OCB are prov-
ably secure in the standard, nonce-respecting scenario, up to the birthday bounds.

In this paper, we first invalidate this belief by presenting an attack against
OCB2. The attack is practical: it needs only one encryption query to create a
forgery with success probability one. No heavy computation or large memory
is needed, we just take a sum of some blocks to create a forgery. The attack
works for any n-bit blockcipher E, and works for any n for which OCB2 can be
defined. The forgery can be any long ciphertext depending on the first encryption
query, and the encryption query is almost a known-plaintext query. In addition,
while the first forgery is existential, the subsequent forgeries have much more
freedom, as the adversary learns the mask applied to E from the first forgery.
This enables to learn multiple blockcipher inputs and outputs, and it results in
an almost-universal forgery attack in the reforgeability setting [BC09, FLLW17]
(see Section 4.3) using few more queries. Moreover, using more queries (roughly
a+m when the target AD has a blocks and the target plaintext has m blocks),
a universal forgery attack is finally possible.

Our attacks point out a critical flaw of OCB2, and show that the authenticity
bound of OCB2 turns out to be one. We emphasize that this is not a flaw of the
global structure of OCB shared by the all versions, but is about the details of
OCB2 that have been overlooked for more than a decade.

The root of our attacks is in the tweakable blockcipher (TBC) [LRW02]
inside OCB2, called XEX∗. More precisely, it is about how OCB2 uses XEX∗ to
implement AE. Here, an encryption of XEX∗ is either C = ∆⊕EK(∆⊕M) or
C = EK(∆ ⊕M), where ∆ is derived from the encryption of nonce multiplied
by a constant in GF(2n). The former is called XEX, and the latter is XE, hence
XEX∗ combines XEX and XE.

Original security proof of Rog04 showed that XEX∗ implements a provably
secure TBC and OCB2 can be seen as a mode of XEX∗. Rog04 concluded that
OCB2 is provably secure since if XEX∗ was replaced with a perfect tweakable
random permutation, the resulting mode is ideally secure. This is an elegant hy-
brid argument, which significantly reduces the complexity of the proof. In fact,

2

the proof strategy of Rog04 and the idea of using TBC as a mode component was
followed by many schemes. In the ongoing CAESAR competition, the most sub-
missions of parallelizable AE based on (tweakable) blockcipher or cryptographic
permutation, including OCB3 itself, employed the strategy of Rog04 or OCB in
general. However, since XEX∗ is not a plain TBC (called tagged TBC), there are
some access rules that the adversary must follow in the game of distinguishing
XEX∗ from the ideal. We found that, even though OCB2 is a mode of XEX∗,
the authenticity game for OCB2 forces the adversary to violate the access rule
of XEX∗. This implies that, even if XEX∗ is a secure (tagged) TBC, its security
can not imply the security of OCB2. When OCB2 is invoked, this violated access
occurs around the processing of the last two message blocks, where XEX is used
for the last-but-one block and XE is used for the last one. The attack exploits
this “violated” access and a relationship between the different masks applied to
the blockcipher.

We have confirmed our attacks using the reference code of OCB2 by Krovetz 2.
Appendix A shows an example.

We also show how to fix OCB2, say by using XEX for the last block. Our
attacks are not applicable to OCB1 and OCB3, and we have not found other
schemes based on OCB that could be affected.

2 Preliminaries

2.1 Notations

Let {0, 1}∗ be the set of all binary strings, including the empty string ε. For
X ∈ {0, 1}∗, its bit length is denoted by |X|, and msbc(X) denotes the first
c ≤ |X| bits of X. Here, |ε| = 0. Let 0c be the sequence of c zeros, where 00 = ε.
The concatenation of two bit strings X and Y is written X ‖Y , or XY when no
confusion is possible.

When 0 ≤ |X| ≤ n, let len(X) be the n-bit encoding of |X|. We also define
the zero padding, X ‖ 0∗, and the one-zero padding, X ‖ 10∗. Both are X when
|X| = n and X ‖ 0∗ = X ‖ 0n−|X| and X ‖ 10∗ = X ‖ 10n−|X|−1 when 0 ≤ |X| <
n.

For X ∈ {0, 1}∗, we also define the parsing into n-bit blocks denoted by

(X[1], X[2], . . . , X[m])
n← X,

where m = |X|n
def
= d|X|/ne, X[1] ‖X[2] ‖ . . . ‖X[m] = X, |X[i]| = n for 1 ≤

i < m and 0 < |X[m]| ≤ n when |X| > 0. When |X| = 0, we let X[1]
n← X,

where X[1] = ε.
If X is a random variable distributed uniformly over X , we write X $← X .

2 http://web.cs.ucdavis.edu/~rogaway/ocb/code-2.0.htm.

3

http://web.cs.ucdavis.edu/~rogaway/ocb/code-2.0.htm

(Tweakable) Blockcipher. A tweakable blockcipher (TBC) [LRW02] is a
keyed function Ẽ : K × T × M → M such that for each (K,T) ∈ K × T ,
Ẽ(K,T, ·) is a permutation overM. Here, K is the key and T is a public value
called tweak. A conventional block cipher is a TBC with T being a singleton,
and specifically written as E : K ×M →M. The encryption of X ∈ M under
key K ∈ K and tweak T ∈ T is Ẽ(K,T,X) and is also written as ẼK(T,X)

or ẼTK(X). For blockcipher we write as EK(X). The decryption is written as
Ẽ−1,T
K (Y) for TBCs and E−1

K (Y) for blockciphers. For any T ∈ T and K ∈ K,
when Y = ẼTK(X) we have Ẽ−1,T

K (Y) = X.
We may omit the subscriptK when being keyed withK is obvious. Moreover,

for a mode of operation using EK , we may treat EK as a key and write as ModeE .
We typically assume n = 128.

Galois Field. For a ∈ {0, 1}n, we may see it as an element of GF(2n) by
taking it as a coefficient vector. Following [Rog04a][IK03], by writing 2 · a or 2a,
we mean the doubling over GF(2n), i.e., the multiplication by the generator of
the field (the polynomial x) and a.

In a similar fashion, 2ca denotes c-times doublings of a, and 3a denotes
2a⊕a. Combined expressions such as 2i · 3ja are similarly defined. For example,
22 · 3a = 3(22a) = 23a⊕ 22a.

For n = 128, it is common to define the field GF(2n) by the lexicographically-
first primitive polynomial, x128 + x7 + x2 + x + 1. With this, 2a is (a � 1) if
msb1(a) = 0 and (a� 1)⊕(012010000111) if msb1(a) = 1, where (a� 1) denotes
the left-shift of a by one bit.

2.2 AEAD

In most cases, we say AE to mean Authenticated Encryption with Associated
Data (AEAD) [Rog02]. Let Π be an AEAD scheme defined over key space K,
nonce space N , associated data (AD) space A, message spaceM and tag space
T = {0, 1}τ for some fixed τ . Here, AD is a part of message that should not be
encrypted but authenticated. For example AD can be header information of a
network protocol. The encryption of Π is a function Π.E : K ×N ×A×M →
M×T , and the decryption (or verification) is a functionΠ.D : K×N×A×M→
M ∪ {⊥}, where ⊥ denotes the verification failure. To encrypt plaintext M
with nonce N and AD A and key K, we compute Π.EK(N,A,M) = (C, T) to
produce ciphertext C and tag T . The tuple (N,A,C, T) is sent to the receiver.
For decryption, we compute Π.DK(N ′, A′, C ′, T ′) and it returns the plaintext
M ′ if the verification successes, and ⊥ if the verification fails. We write ΠK to
mean the tuple (Π.EK , Π.DK).

Security Notions. The security of AEAD can be defined by two notions,
privacy and authenticity [BRW04, Rog04c]. The privacy notion captures the
indistinguishability from random for a nonce-respecting adversary in a chosen-
plaintext-attack setting. Let AO1,O2,...,Oc denote the adversary A accessing c

4

oracles, O1, . . . , Oc, in an arbitrarily order. The privacy notion is defined over
the game where AO1 returns a binary decision at the end of the game, and O1 is
either Π.EK or the random-bits oracle $. Here, $ returns (C, T)

$← {0, 1}|M |×T
for any encryption query (N,A,M). The privacy advantage is defined as

Advpriv
ΠK

(A)
def
= Pr

[
K

$← K : AΠ.EK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·) ⇒ 1

]
,

where AO1 ⇒ 1 denotes the event that the final decision of A is 1. We assume
that A in the privacy game is nonce-respecting, that is, A does not make two
queries with the same nonce.

For the authenticity notion, we consider A accessing Π.EK and Π.DK , where
A is considered to win when it creates a successful forgery. Formally, the authen-
ticity advantage is defined as

Advauth
ΠK

(A)
def
= Pr

[
K

$← K : AΠ.EK ,Π.DK forges
]
,

where A forges if it receives anyM ′ 6= ⊥ from Π.DK . To avoid a trivial win, A is
assumed not to query (N,A,C, T) to Π.DK when there is a previous encryption
query (N,A,M) for some M and the corresponding response (C, T). We also
assume A is nonce-respecting with respect to encryption queries.

2.3 Security of (Tweakable) Blockciphers

Let ẼK : K× T ×M→M be a TBC. Let P̃ be the tweakable uniform random
permutation (TURP). This is an information-theoretic TBC with key uniformly
distributed over all the tweakable permutations, i.e. the set of f(T,X) : T ×M→
M such that f(T, ∗) is a permutation over M for all T ∈ T . The decryption
is denoted by P̃

−1
. We define Tweakable Pseudorandom Permutation (TPRP)

advantage and Tweakable Strong PRP (TSPRP) advantage:

Advtprp
ẼK

(A)
def
= Pr

[
K

$← K : AẼK ⇒ 1
]
− Pr

[
AP̃ ⇒ 1

]
(1)

Advtsprp
ẼK

(A±)
def
= Pr

[
K

$← K : AẼK ,Ẽ
−1
K ⇒ 1

]
− Pr

[
AP̃,P̃

−1

⇒ 1
]
. (2)

Here, A performs Chosen-plaintext attack with chosen tweaks, and A± performs
Chosen-ciphertext attack with chosen tweaks (i.e. it can query any (T,M) to
encrypt and any (T,C) to decrypt).

For blockcipher E : K ×M → M, we analogously define PRP advantage
Advprp

EK
(A) and SPRP advantage Advsprp

EK
(A±), using URP P (which uniformly

distributes over all permutations overM) as an ideal primitive.

3 OCB2

As described, OCB2 is a blockcipher mode for AEAD proposed at [Rog04a]. It
is parallelizable, and is rate-1 as it needs one blockcipher call to process one

5

Algorithm OCB2.EE(N,A,M)

1. L← E(N)
2. (M [1], . . . ,M [m])

n←M
3. for i = 1 to m− 1
4. C[i]← 2iL⊕ E(2iL⊕M [i])
5. Pad← E(2mL⊕ len(M [m]))
6. C[m]←M [m]⊕ msb|M [m]|(Pad)
7. Σ ← C[m] ‖ 0∗ ⊕ Pad
8. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
9. T ← E(2m3L⊕Σ)

10. if A 6= ε then T ← T ⊕ PMACE(A)
11. T ← msbτ (T)
12. return (C, T)

Algorithm OCB2.DE(N,A,C, T)

1. L← E(N)
2. (C[1], . . . , C[m])

n← C
3. for i = 1 to m− 1
4. M [i]← 2iL⊕ E−1(2iL⊕ C[i])
5. Pad← E(2mL⊕ len(C[m]))
6. M [m]← C[m]⊕ msb|C[m]|(Pad)
7. Σ ← C[m] ‖ 0∗ ⊕ Pad
8. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
9. T ∗ ← E(2m3L⊕Σ)

10. if A 6= ε then T ∗ ← T ∗ ⊕ PMACE(A)
11. T ∗ ← msbτ (T ∗)
12. if T = T ∗ return M
13. else return ⊥

Algorithm PMACE(A)

1. S ← 0n

2. V ← 32E(0n)
3. (A[1], . . . , A[a])

n← A
4. for i = 1 to a− 1
5. S ← S ⊕ E(2iV ⊕A[i])
6. S ← S ⊕A[a] ‖ 10∗

7. if |A[a]| = n
8. Q← E(3V ⊕ S)
9. else Q← E(32V ⊕ S)

10. return Q

Fig. 1. Algorithms of OCB2.

message block. The pseudocode of OCB2 is shown in Fig. 1. The basic form
of OCB2 presented in Rog04 (Fig. 2) is a plain AE3, where there is no AD.
Section 11 of Rog04 described that the plain OCB2 can be converted into an
AEAD, by computing PMAC for AD and taking a sum (XOR) of PMAC output
and the tag of plain OCB2 only if AD is non-empty. This scheme is referred
to as AEM in Rog04. The specification of PMAC in OCB2 is shown in the full
version of Rog04 [Rog04b]. It is different from the initial version [BR02] in that it
uses doublings for mask generation and is designed so that it is computationally
independent from the plain AE part. We remark that our attack is independent
of the specification of PMAC.

3 It was named OCB1 in the paper.

6

Fig. 2. OCB2 for the case of empty AD.

4 Attacks

4.1 Minimal Example of Forgery

We describe the minimal example of our forgery attack against OCB2. For sim-
plicity, let τ = n.

1. Encrypt (N,A,M), whereA is empty,M is a 2n-bit messageM = M [1] ‖M [2]
specified as

M [1] = len(0n),

and M [2] is any n-bit block. Encryption oracle returns the pair of 2n-bit
ciphertext and tag, C = C[1] ‖C[2] and T .

2. Decrypt (N ′, A′, C ′, T ′) with |C ′| = n such that

N ′ = N, (3)
A′ = ε, (4)
C ′ = C[1]⊕ len(0n), (5)
T ′ = M [2]⊕ C[2] (6)

and T ′ will be always accepted as valid, while clearly C ′ 6= C (different lengths),
implying a successful forgery.

Why this works? Because

C[1] = 2L⊕ E(2L⊕ len(0n)) (7)
C[2] = M [2]⊕ Pad, (8)

7

where L = E(N) and Pad = E(22L⊕ len(M [2])) = M [2]⊕ C[2]. Let Pad′ and
Σ′ be the true values for the decryption query. Then C ′ is decrypted to

M ′ = C ′ ⊕ Pad′ (9)
= C ′ ⊕ E(2L⊕ len(0n))︸ ︷︷ ︸

Pad′

(10)

= C[1]⊕ len(0n)⊕ E(2L⊕ len(0n)) (11)
= 2L⊕ E(2L⊕ len(0n))︸ ︷︷ ︸

C[1]

⊕len(0n)⊕ E(2L⊕ len(0n)) (12)

= 2L⊕ len(0n), (13)

and the tag is generated as

T ∗ = E(2 · 3L⊕Σ′) (14)
= E(2 · 3L⊕ C ′ ⊕ Pad′︸ ︷︷ ︸

Σ′

) (15)

= E(2 · 3L⊕M ′) (16)
= E(2 · 3L⊕ 2L⊕ len(0n)︸ ︷︷ ︸

M ′

) (17)

= E(22L⊕ len(0n)) (18)
= Pad, (19)

where (18) follows from 2 · 3L = 22L ⊕ 2L. Thus, T ∗ is determined by the first
encryption query. See Fig. 3 for the graphical representation of the attack. As we
mentioned, the attack is independent of the AD processing function (PMAC),
and of the specification of len(∗).

In the reference code, the input message is assumed to be a byte string and
len(X) is specified as 0n−8‖`X , where `X denotes the standard binary encoding
of |X|. Hence len(0n) for n = 128 is 0120107.

Extensions. Since we do not need the information on T in the first encryption
query, the above attack works if AD is non-empty at the encryption query. The
decryption query needs the empty AD. For the same reason, it also works even
when the tag is truncated to τ < n bits; we set T ′ = msbτ (M [2] ⊕ C[2]) and it
will be accepted with probability one.

4.2 Forgery of Longer Messages

The attack of Section 4.1 can be extended to arbitrarily long messages:

1. Encrypt (N,A,M), where A is arbitrary, M is a message of m blocks M =
M [1] ‖ · · · ‖M [m− 1] ‖M [m] satisfying

M [m− 1] = len(0n),

and M [m] is any s-bit string such that τ ≤ s ≤ n. Encryption oracle returns
the pair of ciphertext and tag, C = C[1] ‖ · · · ‖C[m− 1] ‖C[m] and T .

8

Fig. 3. Attack described at Section 4.1.

2. Decrypt (N ′, A′, C ′, T ′), such that N ′ = N , A′ = ε and C ′ has m−1 blocks,
C ′ = C ′[1] ‖ · · · ‖C ′[m− 2] ‖C ′[m− 1], specified as

C ′[i] = C[i] for 1 ≤ i ≤ m− 2, (20)

C ′[m− 1] =

m−2∑
i=1

M [i]⊕ C[m− 1]⊕ len(M [m]) (21)

T ′ = msbτ (M [m]⊕ C[m]). (22)

This forgery attack again works. Let T
′
be the true string of untruncated tag

in the decryption query. Then we have

T
′

= E(Σ′ ⊕ 3 · 2m−1L) (23)

= E

((
m−2∑
i=1

M ′[i]⊕ C ′[m− 1]⊕ Pad′
)
⊕ 3 · 2m−1L

)
(24)

= E

(
m−2∑
i=1

M [i]⊕ C ′[m− 1]⊕ C[m− 1]⊕ 2m−1L⊕ 3 · 2m−1L

)
, (25)

9

where M ′[i] = M [i] is the i-th decrypted plaintext block, and Pad′ = C[m −
1] ⊕ 2m−1L. Since 2m−1L ⊕ 3 · 2m−1L = 2mL, the last term of (25) is further
expanded as

E

(
m−2∑
i=1

M [i]⊕ C ′[m− 1]⊕ C[m− 1]⊕ 2mL

)
(26)

= E

(
m−2∑
i=1

M [i]⊕

(
m−2∑
i=1

M [i]⊕ C[m− 1]⊕ len(M [m])

)
⊕ C[m− 1]⊕ 2mL

)
(27)

= E (len(M [m])⊕ 2mL) (28)
= Pad (29)

Finally, we have

T ∗ = msbτ (T
′
) (30)

= msbτ (Pad) (31)
= msbτ (M [m]⊕ C[m]) (∵ τ ≤ |M [m]| ≤ n) (32)
= T ′ (33)

Meanwhile, in the case that len(M [m]) < τ , the adversary can forge T ∗ with
probability 1/2τ−len(M [m]), since the adversary only knows msblen(M [m])(Pad)
and has to guess the remaining (τ − len(M [m])) bits.

4.3 Almost Universal Forgery, Variant 1

We consider what will happen after the attack of Section 4.1 or 4.2, i.e. attacks
in the reforgeability scenario. Here, the adversary learns L = E(N) by the first
forgery, since

M ′[m− 1] = C ′[m− 1]⊕ Pad′

=

m−2∑
i=1

M [i]⊕ len(M [m])⊕ 2m−1L,

is returned by the decryption oracle, for the case of attack of Section 4.2. For
1 ≤ i ≤ m − 1, let X[i] and Y [i] be X[i] = M [i] ⊕ 2iL and Y [i] = C[i] ⊕ 2iL,
respectively. In addition, let X[m] = len(M [m])⊕ 2mL and Y [m] = Pad. With
the knowledge of L, the adversary learns the m pairs of E’s input and output,
S = {(X[i], Y [i]) : i = 1, . . . ,m}, which allows the second forgery with more
freedom than the first. For example, if the adversary wants to disturb only the
j-th and k-th plaintext blocks for some 1 ≤ j < k ≤ m−1, the second decryption

10

query (N ′′, A′′, C ′′[1] ‖ · · · ‖C ′′[m], T ′′) can be set as N ′′ = N , A′′ = ε, and

C ′′[i] = C[i] (i ∈ {1, · · · ,m} \ {j, k}), (34)

C ′′[j] = Y [k]⊕ 2jL, (35)

C ′′[k] = Y [j]⊕ 2kL, (36)
T ′′ = T. (37)

Then, the unverified plaintext will be

M ′′[i] = M [i] (i ∈ {1, · · · ,m} \ {j, k}) (38)

M ′′[j] = X[k]⊕ 2jL (39)

M ′′[k] = X[j]⊕ 2kL (40)

and the valid checksum Σ′′ is

Σ′′ =

m−1⊕
i=1

M ′′[i]⊕ Y [m]⊕ C ′′[m] (41)

=
⊕

i∈{1,··· ,m−1}\{j,k}

M [i]⊕M ′′[j]⊕M ′′[k]⊕ Pad⊕ C[m] (42)

=
⊕

i∈{1,··· ,m−1}\{j,k}

M [i]⊕M [j]⊕M [k]⊕ Pad⊕ C[m] (43)

=

m−1⊕
i=1

M [i]⊕ Pad⊕ C[m] (44)

= Σ, (45)

sicne M ′′[j]⊕M ′′[k] = X[k]⊕ 2jL⊕X[j]⊕ 2kL = M [j]⊕M [k]. Therefore, the
decryption query will be accepted.

Generally, the adversary can arbitrarily choose the i-th plaintext blocks in
the second forgery from Ii = {X[j]⊕2iL : j = 1, . . . ,m−1}, and by choosing the
last ciphertext block, the checksum can be set to (say) the previous checksum
value in the encryption query so that the tags are matched. This is a powerful,
almost-universal forgery.

However, this attack will not work when the receiver is stateful and detects
a replay in nonce, as the first and second forgeries share the same nonce.

4.4 Almost Universal Forgery, Variant 2

To bypass the problem of stateful receiver mentioned above, we consider another
variant of attack. This will create an almost universal forgery for a nonce that
is never queried with a help of few additional queries.

Suppose the adversary A performs the forgery attack of Section 4.2 using
` blocks. Then she obtains ` input-output pairs of E, S = {(X[i], Y [i]) : i =
1, . . . , `}, where E(X[i]) = Y [i] for 1 ≤ i ≤ `. Let X = {X[1], . . . , X[`]} and

11

Y = {Y [1], . . . , Y [`]}. We assume A wants to create a forgery of the form
(N ′′, A′′, C ′′, T ′′) with A′′ = ε, |C ′′|n = m, and N ′′ = X[k] for some k ∈
{1, . . . , `}, where N ′′ has never been used as a nonce for encryption and decryp-
tion queries. Such N ′′ avoids the detectable replay at the receiver. Since she al-
ready knows the initial mask E(N ′′) = Y [k] and S, the most blocks of C ′′ can be
set so that the decrypted plaintext blocks are predictable. The problem is in the
last block (C ′′[m]), where we need to make sure that len(C ′′[m])⊕2mE(N ′′) ∈ X
so that the corresponding Pad′′ is predictable. This is possible by making another
encryption query with nonce N$ = len(C ′′[m])⊕ 2mE(N ′′) and performing the
forgery with nonce N$ to recover E(N$). The detailed attack procedure is as
follows. For simplicity, we fix |C ′′[m]| = n.

1. Perform the forgery attack of Section 4.2 to obtain X and Y of size `.
2. Choose N ′′ = X[k] ∈ X for some k as the target nonce, and set N$ =

len(C ′′[m])⊕ 2mE(N ′′) = len(0n)⊕ 2mY [k].
3. Perform the forgery of Section 4.1 or 4.2 with nonce N$. Recover E(N$).
4. Arbitrarily choosem elements of Y, Y [j1], . . . , Y [jm−1] and Y [jm+1], possibly

with duplications. Let Y [jm] = E(N$).
5. Decrypt (N ′′, A′′, C ′′, T ′′) such that

C ′′[i] = Y [ji]⊕ 2iE(N ′′) = Y [ji]⊕ 2iY [k], for i = 1, . . . ,m− 1,

C ′′[m] = M ′′[m]⊕ E(N$),

T ′′ = Y [jm+1]

where

M ′′[i] = X[ji]⊕ 2iE(N ′′) = X[ji]⊕ 2iY [k],

M ′′[m] = X[jm+1]⊕
m−1⊕
i=1

M ′′[i]⊕ 3 · 2mE(N ′′).

This will be accepted as valid since the true tag is

E(Σ′′ ⊕ 3 · 2mE(N ′′)) = E

(
m−1⊕
i=1

M ′′[i]⊕M ′′[m]⊕ 3 · 2mE(N ′′)

)
(46)

= E(X[jm+1]) = Y [jm+1]. (47)

Here, Step 3 of our attack can be omitted if N$ is already in X by chance.

5 Universal Forgery with More Queries

In fact, the attacks of Sections 4.1 and 4.2 allow to recover E(X) for any X ∈
{0, 1}n, as N can be of any value in {0, 1}n. This also implies the mask values
of PMAC is also computable by mounting the forgery of with N = 0n.

12

This allows us to mount a universal forgery attack, i.e., we first arbitrarily
choose (N∗, A∗,M∗) and then create a forgery (N∗, A∗, C∗, T ∗) that is accepted
and the decryption oracle returns M∗. Since this is a simple extension of the
almost-universal forgery attacks, we briefly describe the procedure.

1. Choose the target (N∗, A∗,M∗).
2. Perform the attack of Section 4.1 or 4.2 (which we call the basic forgery

attack) with nonce N∗, which involves an encryption query with nonce N∗
but the corresponding pair of AD and plaintext is different from (A∗,M∗).
We obtain a set of I/O pairs of E including (N∗, L∗ = E(N∗)).

3. If A∗ 6= ε, also perform the basic forgery attack with nonce 0n. We obtain a
pair (0n, L$ = E(0n)).

4. With the knowledge of L∗ and L$, we can identify all the inputs and out-
puts of E necessary to construct (C∗, T ∗). Let X ∗ (Y∗) be the set of such
blockcipher inputs (outputs). Here, X ∗ is determined by A∗, M∗, L∗ and
L$.

5. For each element X ∈ X ∗, if E(X) is not already recovered, Perform the
basic forgery attack with nonce X and recover E(X). This will give Y∗.

6. Build (C∗, T ∗) using X and Y and perform a decryption query (N∗, A∗, C∗, T ∗).

To realize a universal choice of N∗, this attack assumes the stateless receiver
described at Section 4.3, as the attacker usesN∗ as a nonce in a successful forgery
(Step 2) before the final forgery. However, by slightly relaxing the universality
for nonce, we can cope with a stateful receiver. That is, we replace Step 2 with
any forgery attacks that give certain input and output sets of E (X and Y), and
N∗ is chosen from X except those used as nonce. Then, N∗ will not appear as
a nonce in the queries except the final decryption query.

The above attack requires around a + m basic forgery attacks if |A∗|n = a
and |M∗|n = m, however, depending on the target values, a further optimization
in terms of the number of queries may be possible.

6 Design Flaw of OCB2

The root of the flaw in OCB2 is in the instantiation of AE using XEX∗. For
blockcipher EK , let

XEXN,i,jE (X)
def
= E(2iL⊕X)⊕ 2iL, (48)

XEN,i,jE (X)
def
= E(2i3jL⊕X), (49)

where L = E(N) for nonce N , for i = 1, 2, . . . and j = 0, 1, Here, j is always
set to 0 for XEX. XEX∗ unifies them by introducing one bit b to the tweak. That
is,

XEX∗,b,N,i,jE (X) =

{
XEXN,i,jE (X) if b = 1;

XEN,i,jE (X) if b = 0.
(50)

13

Decryption is trivially defined, and is never invoked when b = 0. Rog04 refers b
to tag ; not to be confused with the tag in the global interface of AE.

Suppose an encryption query (N,A,M), where A = ε and M is parsed as
(M [1], . . . ,M [m]), is given to OCB2. It encrypts M by using XEX∗,1,N,i,0E for
M [i] with i = 1, . . . ,m − 1, and XEX∗,0,N,m,0E for M [m]. The checksum, Σ, is
encrypted by XEX∗,0,N,m,1E to create the (untrancated) tag.

In the proof of OCB2, we first apply the standard conversion from compu-
tational to information theoretic security [BDJR97] and focus on the security of
OCB2 instantiated by an n-bit uniform random permutation (URP), P, denoted
by OCB2P. Then, the proof of OCB2P has two main steps: the indistinguishabil-
ity of XEX∗P, and the privacy and authenticity of AE4 which replaces XEX∗P in
OCB2P with an ideal primitive, a tweakable random permutation P̃. The latter
step is not relevant to our attacks.

For the first step, Rog04 proved that XEX∗P is indistinguishable from P̃ for
any adversary who queries to both encryption and decryption of XEX∗P and
respects the semantics of tag b. More precisely, the conditions for the adversary
are as follows.

Definition 1. We say an adversary querying XEX∗ is tag-respecting when

1. XEX∗,0,N,i,j is only queried in encryption queries for any (N, i, j);
2. Once XEX∗,b,N,i,j is queried in either encryption or decryption, then it is

not allowed to query XEX∗,1−b,N,i,j, for any (N, i, j).

Let ΘCB2Ẽ be the mode of operations of TBC ẼK which has the same
interface as XEX∗E . The pseudocode is shown in Fig. 4. Then, ΘCB2XEX∗E is
equivalent to OCB2E .

Let P̃ be TURP which has the same interface as XEX∗. Rog04 showed that,
for any privacy-adversary A and authenticity-adversary A±,

Advpriv
OCB2P

(A) = Advpriv
ΘCB2XEX∗

P

(A) ≤ Advtprp
XEX∗P

(B) + Advpriv
ΘCB2P̃

(A), (51)

Advauth
OCB2P

(A±) = Advauth
ΘCB2XEX∗

P

(A±) ≤ Advtsprp
XEX∗P

(B±) + Advauth
ΘCB2P̃

(A±)

(52)

hold for some CPA-adversary B and CCA-adversary B±, which are tag-respecting
and can simulate the privacy and the authenticity games involving ΘCB2XEX∗P
and A and A±, respectively. From Rog04, we have

Advtprp
XEX∗P

(B) ≤ 4.5q2

2n
, and Advtsprp

XEX∗P
(B±) ≤ 9.5q2

2n
(53)

for any B and B± that are tag-respecting and use at most q queries. The last
terms of (51) and (52) are proved to be almost ideally small: zero for privacy
and 2n−τ/(2n − 1) for authenticity with single decryption query.

4 An equivalent mode for OCB3 is called ΘCB3 [KR11].

14

Algorithm ΘCB2.EẼ(N,A,M)

1. (M [1], . . . ,M [m])
n←M

2. for i = 1 to m− 1
3. C[i]← Ẽ∗,1,N,i,0(M [i])

4. Pad← Ẽ∗,0,N,m,0(len(M [m]))
5. C[m]←M [m]⊕ msb|M [m]|(Pad)
6. Σ ← C[m] ‖ 0∗ ⊕ Pad
7. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
8. T ← Ẽ∗,0,N,m,1(Σ)
9. return (C, T)

Algorithm ΘCB2.DẼ(N,A,C, T)

1. (C[1], . . . , C[m])
n← C

2. for i = 1 to m− 1
3. M [i]← (Ẽ∗,1,N,i,0)−1(C[i])

4. Pad← Ẽ∗,0,N,m,0(len(C[m]))
5. M [m]← C[m]⊕ msb|C[m]|(Pad)
6. Σ ← C[m] ‖ 0∗ ⊕ Pad
7. Σ ←M [1]⊕ · · · ⊕M [m− 1]⊕Σ
8. T ∗ ← Ẽ∗,0,N,m,1(Σ)
9. if T = T ∗ return M

10. else return ⊥

Fig. 4. Algorithms of ΘCB2. For simplicity, τ = n and A = ε.

The privacy bound is obtained from (53) and (51). However, to derive the
authenticity bound, we need to identify B± that can simulate A±, where A±
must compute the decryption of ΘCB2, even with single decryption query 5.
Depending on A±, there are cases that no tag-respecting B± can simulate A±.
For example, let us assume that A± first queries (N,A,M) of |M | = 2n to
the encryption oracle and then queries (N ′, A′, C ′, T ′) to the decryption oracle,
where N ′ = N , A′ = ε and |C ′| = n, as well as the attack of Section 4.1.
Then, B± who simulates A± first queries to XEX∗,1,N,1,0 and XEX∗,0,N,2,0 and
XEX∗,0,N,2,1. For the second query, it queries to XEX∗,0,N,1,0 and XEX∗,0,N,1,1.
Thus both XEX∗,1,N,1,0 and XEX∗,0,N,1,0 are queried, which implies a violation
of the second condition of Definition 1. Consequently, the authenticity proof of
Rog04 does not work, hence our attacks. At the same time, this also implies
that the privacy attack, i.e. distinguishing the ciphertext from random using
only encryption queries, is not possible.

7 Practicality, and Applicability to Others

Almost Known-Plaintext Query. The first encryption query is almost a
known-plaintext query in that it works with a known plaintext except the last two
blocks being len(0n)‖X for some known X ∈ {0, 1}n, where len(0n) = 0120107

in the reference code. This can happen (e.g.) when a certain padding is already
applied to the plaintext.
5 Rog04 defines the authenticity notion in the game that the adversary queries to the
encryption oracle then outputs a query to the decryption oracle, but the response
is not returned. The decryption oracle is not involved in the game and the success
or failure of the forgery is determined outside the game. This definition itself is
essentially the same as (1), and has no problem. However, because the adversary’s
final output does not tell whether the adversary wins or loses, we do not know how
to to apply a hybrid argument of (52) using this definition.

15

Other OCB Versions. Our attacks are only applicable to OCB2. For OCB1,
the last block is encrypted by XE with a clearly separated mask. For OCB3, the
last block is encrypted by XEX when it is n bits and otherwise by XE with a
mask separated from those used by XEX.

Other Designs based on OCB. We have not found other AE algorithms
based on OCB that could be affected by our attacks. OTR [Min14] is an inverse-
free (for the absense of the blockcipher decryption in the scheme) parallelizable
AE having a similar structure as OCB. As it only uses XE for the whole process,
it is safe from our attacks. OPP [GJMN16] is a permutation-based AE based on
OCB. It always uses XEX, or more precisely, a variant of XPX [Men16], because
otherwise an offline permutation inverse query easily breaks the scheme. It is
safe because of this consistent use of XPX.

Standards and Libraries. ISO/IEC 19772:2009 specifies OCB2 and thus is
affected. SJCL 6 is a well-known Javascript cryptography library and it imple-
ments OCB2, though we have not tested our attacks on it7.

8 Fixing OCB2

We suggest several ways to fix OCB2.

Use XEX for the Last Block. The simplest way is to use XEX for the last
block. We call it OCB2f (f for fix). Its pseudocode is obtained by just changing
line 5 of OCB2.EE and OCB2.DE in Fig. 1 to

Pad← 2mL⊕ E(2mL⊕ len(M [m])), and
Pad← 2mL⊕ E(2mL⊕ len(C[m])).

OCB2f can be regarded as a mode of XEX∗, since the tweak spaces of XE
and XEX in OCB2f are distinct. Specifically, we define ΘCB2fẼ as the mode of
ẼK obtained by changing line 4 of ΘCB2.EẼ in Fig. 4 to

Pad← Ẽ∗,1,N,m,0(len(M [m])).

ΘCB2f.DẼ is defined accordingly. Then ΘCB2fẼ is equivalent to OCB2fE if ẼK
is XEX∗E .

The security bounds of OCB2f are the same as those claimed for OCB2:

6 http://bitwiseshiftleft.github.io/sjcl/
7 We need to natively use SJCL for attacks. The demo page of SJCL (https:
//bitwiseshiftleft.github.io/sjcl/demo/) cannot be used since (to our under-
standing) it only accepts ASCII strings for plaintext, while our attacks need a plain-
text that cannot be encoded to a valid ASCII string.

16

http://bitwiseshiftleft.github.io/sjcl/
https://bitwiseshiftleft.github.io/sjcl/demo/
https://bitwiseshiftleft.github.io/sjcl/demo/

Theorem 1. For OCB2fP, let A be the privacy adversary and let A± be the
authenticity adversary with single decryption query. Let σpriv (σauth) be the total
number of P calls needed in the privacy (authenticity) game. Then we have

Advpriv
OCB2fP(A) = Advpriv

OCB2fXEX∗
P

(A) ≤ Advtprp
XEX∗P

(B) + Advpriv
ΘCB2fP̃

(A)

≤
4.5σ2

priv

2n
(54)

Advauth
OCB2fP(A±) = Advauth

OCB2fXEX∗
P

(A±) ≤ Advtsprp
XEX∗P

(B±) + Advauth
ΘCB2fP̃

(A±)

≤ 9.5σ2
auth

2n
+

2n−τ

2n − 1
(55)

hold for some tag-respecting B using σpriv queries and tag-respecting B± using
σauth queries.

Intuitively, the security of OCB2f is proved because OCB2f is ΘCB2f using Ẽ
instantiated by XEX∗, and the privacy and authenticity games do not force the
adversary to violate the access rules (Definition 1). Combining (53) and the
proofs of ΘCB2P̃ from Rog04 with minor changes gives the desired results. In
slightly more detail, the proof for privacy is trivially obtained in the same manner
to that of Rog04. For the authenticity bound, since this is again almost the same
as the proof of OCB2, we provide a proof sketch that focuses on the important
difference from the proof of OCB2. For simplicity, we ignore AD (assuming it is
empty for all queries) and τ = n. A full proof will appear in the full version.

Proof. (Sketch) Suppose A± queries (N1,M1), . . ., (Nq,Mq) to the encryption
oracle and (N ′, C ′, T ′) to the decryption oracle. For 1 ≤ i ≤ q, let (Ci, Ti) be
the return value for the query (Ni,Mi). Without loss of generality, we assume
A± tries to forge after all encryption queries. We need to consider the following
cases.

Case 1: N ′ /∈ {N1, . . . , Nq}
Case 2: N ′ = Ni for some i ∈ {1, . . . , q}, |C ′|n = |Ci|n

In these two cases, the proof is almost the same as ΘCB2P̃ and the adversary
can guess the valid tag, T ∗, with probability at most 2n−τ/(2n − 1) .

Case 3: N ′ = Ni for some i ∈ {1, . . . , q}, |C ′|n < |Ci|n
Let |C ′|n = c′, |Ci|n = c. In this case, unlike ΘCB2P̃, Ẽ

∗,1,N ′,c′,0 is invoked
to decrypt C ′[c′], while Ẽ∗,1,N

′,c′,0 (where the underlying blockcipher is P)
has also been used in an encryption query. Nevertheless, the adversary has
to guess T ∗ without access to Ẽ∗,0,N

′,c′,1 since c′ 6= c. Since Ẽ∗,0,N
′,c′,1 has

never queried before, the probability of T ∗ = T ′ is 1/2τ .
Case 4: N ′ = Ni for some i ∈ {1, . . . , q}, |C ′|n > |Ci|n

In the same manner to the above case, the forging probability is 1/2τ .

17

Use XEX+. Minematsu and Matsushima [MM09] proposed an extension of
XEX∗ called XEX+. This allows to use plain blockcipher calls in combination
with XEX and XE. MM09 suggested how to use XEX+ to instantiate a variant
of OCB, where the last message block is encrypted by an unmasked blockcipher.
This variant of OCB is not affected by our attacks and provably secure.

9 Conclusions

We have presented practical forgery attacks against OCB2, a high-profile, ISO-
standard authenticated encryption scheme. This was possible due to the dis-
crepancy between the proof of OCB2 and the actual construction, in particular
about the interpretation of OCB2 as a mode of TBC which combines XEX and
XE. While the latest OCB3 has a superior software performance from the pre-
vious ones, and is clearly recommended by the designers, we think OCB2 is still
quite influential for its simple description and the sophisticated, modular design
based on TBC. Our attacks show that, while the approach introduced by Rog04
is invaluable, we could not directly derive a secure AE from it without applying
a fix.

We comment that, due to the errors in the proofs, provably-secure schemes
can be broken, or schemes still remain secure but the proofs need to be fixed.
Even if we limit our focus to AE, we have many examples, such as NSA’s Dual
CTR [Rog04d], [DGW01], EAX-prime [MLMI13], GCM [IOM12], and some of
the CAESAR submissions [Nan14], [BS16], [SMAP15] and more. We believe our
work to emphasize the quality of security proofs and their active verifications.

Acknowledgements

The authors would like to thank Tetsu Iwata for useful comments.

References

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky
Mouha, and Kan Yasuda. How to Securely Release Unverified Plaintext in
Authenticated Encryption. In ASIACRYPT (1), volume 8873 of Lecture
Notes in Computer Science, pages 105–125. Springer, 2014.

[ADL17] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting Authenticated
Encryption Robustness with Minimal Modifications. In CRYPTO (3),
volume 10403 of Lecture Notes in Computer Science, pages 3–33. Springer,
2017.

[AY13] Kazumaro Aoki and Kan Yasuda. The Security of the OCB Mode of
Operation without the SPRP Assumption. In ProvSec, volume 8209 of
Lecture Notes in Computer Science, pages 202–220. Springer, 2013.

[BC09] John Black and Martin Cochran. MAC Reforgeability. In FSE, volume
5665 of Lecture Notes in Computer Science, pages 345–362. Springer, 2009.

18

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A Concrete
Security Treatment of Symmetric Encryption. In FOCS ’97, pages 394–
403. IEEE Computer Society, 1997.

[BN17] Ritam Bhaumik and Mridul Nandi. Improved Security for OCB3. In
ASIACRYPT (2), volume 10625 of Lecture Notes in Computer Science,
pages 638–666. Springer, 2017.

[BR02] John Black and Phillip Rogaway. A Block-Cipher Mode of Operation
for Parallelizable Message Authentication. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science,
pages 384–397. Springer, 2002.

[BRW04] Mihir Bellare, Phillip Rogaway, and David A. Wagner. The EAX Mode of
Operation. In FSE, volume 3017 of Lecture Notes in Computer Science,
pages 389–407. Springer, 2004.

[BS16] Raphael Bost and Olivier Sanders. Trick or Tweak: On the (In)security
of OTR’s Tweaks. In ASIACRYPT (1), volume 10031 of Lecture Notes in
Computer Science, pages 333–353, 2016.

[DGW01] Pompiliu Donescu, Virgil D. Gligor, and David Wagner. A Note on NSA’s
Dual Counter Mode of Encryption, 2001. http://www.cs.berkeley.edu/
~daw/papers/dcm-prelim.ps/.

[Fer02] Niels Ferguson. Collision attacks on OCB. Comments
to NIST, 2002. https://csrc.nist.gov/CSRC/media/
Projects/Block-Cipher-Techniques/documents/BCM/Comments/
general-comments/papers/Ferguson.pdf/.

[FLLW17] Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel. Reforgeability
of Authenticated Encryption Schemes. In ACISP (2), volume 10343 of
Lecture Notes in Computer Science, pages 19–37. Springer, 2017.

[GJMN16] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves.
Improved Masking for Tweakable Blockciphers with Applications to Au-
thenticated Encryption. In EUROCRYPT (1), volume 9665 of Lecture
Notes in Computer Science, pages 263–293. Springer, 2016.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In
Thomas Johansson, editor, FSE, volume 2887 of Lecture Notes in Com-
puter Science, pages 129–153. Springer, 2003.

[IOM12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and
Repairing GCM Security Proofs. In CRYPTO, volume 7417 of Lecture
Notes in Computer Science, pages 31–49. Springer, 2012.

[ISO09] Information Technology - Security techniques - Authenticated encryption,
ISO/IEC 19772:2009. International Standard ISO/IEC 19772, 2009.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of
Authenticated-Encryption Modes. In FSE, volume 6733 of Lecture Notes
in Computer Science, pages 306–327. Springer, 2011.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block
ciphers. In Moti Yung, editor, CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 31–46. Springer, 2002.

[Men16] Bart Mennink. XPX: Generalized Tweakable Even-Mansour with Im-
proved Security Guarantees. In CRYPTO (1), volume 9814 of Lecture
Notes in Computer Science, pages 64–94. Springer, 2016.

[Min14] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption
from Pseudorandom Functions. In Eurocrypt, 2014. to appear.

19

http://www.cs.berkeley.edu/~daw/papers/dcm-prelim.ps/
http://www.cs.berkeley.edu/~daw/papers/dcm-prelim.ps/
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Ferguson.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Ferguson.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Ferguson.pdf/

[MLMI13] Kazuhiko Minematsu, Stefan Lucks, Hiraku Morita, and Tetsu Iwata. At-
tacks and Security Proofs of EAX-Prime. In FSE, volume 8424 of Lecture
Notes in Computer Science, pages 327–347. Springer, 2013.

[MM09] Kazuhiko Minematsu and Toshiyasu Matsushima. Generalization and Ex-
tension of XEX* Mode. IEICE Transactions, 92-A(2):517–524, 2009.

[Nan14] Mridul Nandi. Forging Attacks on Two Authenticated Encryption Schemes
COBRA and POET. In ASIACRYPT (1), volume 8873 of Lecture Notes
in Computer Science, pages 126–140. Springer, 2014.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a
block-cipher mode of operation for efficient authenticated encryption. In
ACM Conference on Computer and Communications Security, pages 196–
205. ACM, 2001.

[RFC14] The OCB Authenticated-Encryption Algorithm. IRTF RFC 7253, 2014.
[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vi-

jayalakshmi Atluri, editor, ACM Conference on Computer and Communi-
cations Security, pages 98–107. ACM, 2002.

[Rog04a] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. In ASIACRYPT, volume 3329
of Lecture Notes in Computer Science, pages 16–31. Springer, 2004.

[Rog04b] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC. Full version of [Rog04a], 2004.
available from http://www.cs.ucdavis.edu/~rogaway/papers/.

[Rog04c] Phillip Rogaway. Nonce-Based Symmetric Encryption. In FSE, volume
3017 of Lecture Notes in Computer Science, pages 348–359. Springer, 2004.

[Rog04d] Phillip Rogaway. On the Role Definitions in and Beyond Cryptography. In
ASIAN, volume 3321 of Lecture Notes in Computer Science, pages 13–32.
Springer, 2004.

[SMAP15] Willem Schroé, Bart Mennink, Elena Andreeva, and Bart Preneel. Forgery
and Subkey Recovery on CAESAR Candidate iFeed. In SAC, volume 9566
of Lecture Notes in Computer Science, pages 197–204. Springer, 2015.

[SWZ12] Zhelei Sun, Peng Wang, and Liting Zhang. Collision Attacks on Variant
of OCB Mode and Its Series. In Inscrypt, volume 7763 of Lecture Notes
in Computer Science, pages 216–224. Springer, 2012.

[VV18] Serge Vaudenay and Damian Vizár. Can Caesar Beat Galois? - Robustness
of CAESAR Candidates Against Nonce Reusing and High Data Complex-
ity Attacks. In ACNS, volume 10892 of Lecture Notes in Computer Science,
pages 476–494. Springer, 2018.

A Code Example for Minimal Attack

1. Retrieve OCB2 reference code from http://web.cs.ucdavis.edu/~rogaway/
ocb/code-2.0.htm and AES reference code (rijndael-alg-fst.c).

2. Change the main routine of ocb.c to the following snippet:

int
main(void)
{

block nbits = {0};

20

http://www.cs.ucdavis.edu/~rogaway/papers/
http://web.cs.ucdavis.edu/~rogaway/ocb/code-2.0.htm
http://web.cs.ucdavis.edu/~rogaway/ocb/code-2.0.htm

block N = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
block K = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
byte Hatk[0]; /* any */
byte Matk[32] = {0};
byte Catk[32] = {0};
byte Hforge[0]; /* must be empty */
byte Cforge[16] = {0};
byte Mforge[16] = {0};
block T,Tatk,Tforge;
int res;
ocb_state *state;

/* Test for the minimal attack */
printf("Test for minimal attack \n");
state = ocb_init((byte *)"abcdefghijklmnop",
sizeof(T),sizeof(N),AES128);
memset(nbits,0,sizeof(block));
nbits[sizeof(block)-1] = 16 * 8; /* 128 bits */
memcpy(Matk,nbits,sizeof(block));
printf("Encryption query:\n");
pbuf(N,16, " Nonce");
pbuf(Matk,32, " Plaintext");
pbuf(Hatk,sizeof(Hatk), " AD");
ocb_provide_header(state,Hatk,sizeof(Hatk));
ocb_encrypt(state,N,Matk,sizeof(Matk),Catk,Tatk);
pbuf(Catk,32, " Ciphertext");
pbuf(Tatk,16, " Tag");
printf("Decryption query (forgery):\n");
memcpy(Cforge, Catk, 16);
xor_block(Cforge, Cforge, nbits);
pbuf(N,16, " Forged Nonce (the same as encryption)");
pbuf(Hforge, sizeof(Hforge), " Forged AD (empty)");
pbuf(Cforge,16, " Forged Ciphertext");
memcpy(Tforge, Matk+16, 16);
xor_block(Tforge, Tforge, Catk+16);
pbuf(Tforge, 16, " Forged Tag");
ocb_provide_header(state,Hforge,sizeof(Hforge));
res = ocb_decrypt(state,N,Cforge,sizeof(Cforge),Tforge,
Mforge);
ocb_zeroize(state);
printf("Tags match: %i.\n", res); /* 1 is "matched" */
pbuf(Mforge, sizeof(Mforge), " Forged Plaintext");
return 0;

}

21

	 Cryptanalysis of OCB2
	Introduction
	Preliminaries
	Notations
	AEAD
	Security of (Tweakable) Blockciphers

	OCB2
	Attacks
	Minimal Example of Forgery
	Forgery of Longer Messages
	Almost Universal Forgery, Variant 1
	Almost Universal Forgery, Variant 2

	Universal Forgery with More Queries
	Design Flaw of OCB2
	Practicality, and Applicability to Others
	Fixing OCB2
	Conclusions
	Code Example for Minimal Attack

